Sr and Nd isotope data from the fluorspar district of Asturias, northern Spain

V. Sánchez a,⁎, M. Corbella b, J.M. Fuenlabrada c, E. Vindel a, T. Martín-Crespo d

a Dpto. Cristalográfia y Mineralogía, F. C. C. Geológicas, Universidad Complutense, 28040-Madrid, Spain
b Departament de Geologia, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain
c C.A.I. de Geocronología, Universidad Complutense, 28040-Madrid, Spain
d Dpto. Matemáticas y Física Aplicadas y Ciencias de la Naturaleza, Univ. Rey Juan Carlos, 28933-Móstoles, Spain

Received 8 August 2005; accepted 12 November 2005
Available online 24 March 2006

Abstract

The origin and age of the hydrothermal fluids related to the precipitation of fluorite, barite and calcite in the Villabona, La Collada and Berbes localities (Asturias fluorspar district, N Spain) have been evaluated from Sr and Nd radiogenic isotopes. Sr isotope data (87Sr/86Sr=0.7081 to 0.7096) are compatible with mixing between seawater and a more evolved groundwater that interacted with the basement. From Nd isotopes in fluorite, an isochron age of 185±29 Ma (Lower Jurassic) was obtained, consistent with other hydrothermal events in the Iberian Peninsula and Europe. These constraints are essential to proceed with a quantitative model for the genesis of the mineralization that includes fluid and heat flow together with reactive transport of solutes.

Keywords: Fluorite; Sr isotopes; Sm–Nd isochron; Hydrothermal fluids

1. Introduction

The Asturian fluorspar district (N Spain) is one of the most important in Europe. Some of the deposits in the Villabona, La Collada, and Berbes-Caravia subdistricts are currently in operation. They appear as veins cross-cutting the Paleozoic basement, and ‘mantos’ along the Paleozoic-Triassic unconformity, replacing a tectonic breccia. The paragenetic sequence is composed by quartz, fluorite (one generation; from yellow, uncolored to deep purple), barite, calcite, and late sulfides. Fluorite is more abundant towards the centre and west of the district, while barite predominates towards the east. Coincidentally, there is a decrease in the homogenization temperatures of fluid inclusions in fluorite and quartz from the east and central areas, that is the Caravia-Berbes and La Collada subdistricts, to the west or Villabona subdistrict (García Iglesias and Loredo, 1994; Sánchez et al., 2005). Up to now, no data about the age of the deposits was available although geological constraints suggested they could form at any time from Permian to Lower Jurassic.

Similar mineralization is found in the northeast of the Iberian Peninsula (Pyrenees and Catalan Coastal Ranges); it had presumably formed from Upper Triassic to Middle Jurassic (Canals and Cardellach, 1993). Hydrothermal events of Permian age have also been identified in the central part of Spain (Central System) by Tornos et al. (2000) and Martín-Crespo et al. (2004). Therefore, the time period from Permo-Triassic to